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Abstract

Quorum systems are well-known tools for ensuring the con-
sistency and availability of replicated data despite the be-
nign failure of data repositories. In this paper we consider
the arbitrary (Byzantine) failure of data repositories and
present the first study of quorum system requirements and
constructions that ensure data availability and consistency
despite these failures. We also consider the load associated
with our quorum systems, i.e., the minimal access probabil-
ity of the busiest server. For services subject to arbitrary
failures, we demonstrate quorum systems over n servers with
a load of O( =), thus meeting the lower bound on load for
benignly fau]t-tolermt quorum systems. We explore several
variations of our quorum systems and extend our construc-
tions to cope with arbitrary client failures.

1  Introduction

A well known way to enhance the availability and perfor-
mance of a replicated service is by using quorums. A quo-
rum system for a universe of servers is a collection of subsets
of servers, each pair of which intersect. Intuitively, each quo-
rum can operate on behalf of the system, thus increasing its
availability and performance, while the intersection prop-
erty guarantees that operations done on distinct quorums
preserve consistency.

In this paper we consider the arbitrary (Byzantine) fail-
ure of clients and servers, and initiate the study of quorum
systems in this model. Intuitively, a quorum system tolerant
of Byzantine failures is a collection of subsets of servers, each
pair of which intersect in a set containing sufficiently many
correct servers to guarantee consistency of the replicated
data as seen by clients. We provide the following contribu-
tions.

1. We define the class of masking quorum systems, with
which data can be consistently replicated in a way that
is resilient to the arbitrary failure of data repositories.
We present several example constructions of such systems
and show necessary and sufficient conditions for the exis-
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tence of masking quorum systems under different failure
assumptions.

2. We explore two variations of masking quorum systems.
The first, called dissemination quorum systems, is suited
for services that receive and distribute self-verifying in-
formation from correct clients (e.g., digitally signed val-
ues) that faulty servers can fail to redistribute but cannot
undetectably alter. The second variation, called opague
masking quorum systems, is similar to regular masking
quorums in that it makes no assumption of self-verifying
data, but it differs in that clients do not need to know the
failure scenarios for which the service was designed. This
somewhat simplifies the client protocol and, in the case
that the failures are maliciously induced, reveals less in-
formation to clients that could guide an attack attempting
to compromise the system.

3. We explore the load of each type of quorum system, where
the load of a quorum system is the minimal access prob-
ability of the busiest server, minimizing over all strate-
gies for picking quorums. We present a masking quorum
system with the property that its load over a total of n
servers is O(3=), thereby meeting the lower bound for

the load of benignly-fault-tolerant quorum systems. For
opaque masking quorum systems, we prove a lower bound
of % on the load, and present a construction that meets
this lower bound and proves it tight.

4. For services that use masking quorums (opaque or not),
we show how to deal with faulty clients in addition to
faulty servers. The primary challenge raised by client fail-
ures is that there is no guarantee that clients will update
quorums according to any specified protocol. Thus, a
faulty client could leave the service in an inconsistent and
irrecoverable state. We develop an update protocol, by
which clients access the replicated service, that prevents
clients from leaving the service in an inconsistent state.
The protocol has the desirable property that it involves
only the quorum at which an access is attempted, while
providing system-wide consistency properties.

In our treatment, we express assumptions about possi-
ble failures in the system in the form of a fail-prone system
B = {Bi,..., Bx} of servers, such that some B; contains
all the faulty servers. This formulation includes typical fail-
ure assumptions that at most a threshold f of servers fail
(e.g., the sets Bi,..., Bk could be all sets of f servers),
but it also gcncrahzes to allow less uniform failure scenar-

. Our motivation for exploring this generalization stems



from our experience in constructing secure distributed ser-
vices [34, 27], i.e., distributed services that can tolerate the
malicious corruption of some (typically, up to a threshold
number of) component servers by an attacker. A criticism
to assuming a simple threshold of corrupted servers is that
server penetrations may not be independent. For exam-
ple, servers in physical proximity to each other or in the
same administrative domain may exhibit correlated proba-
bilities of being captured, or servers with identical hardware
and software platforms may have correlated probabilities of
electronic penetration. By exploiting such correlations (i.e.,
knowledge of the collection B), we can design quorum sys-
tems that more effectively mask faulty servers.

Our quorum systems, if used in conjunction with ap-
propriate protocols and synchronization mechanisms, can
be used to implement a wide range of data semantics. In
this paper, however, we choose to demonstrate a variable
supporting read and write operations with relatively weak
semantics, in order to maintain focus on our quorum con-
structions. These semantics imply a safe variable [24] in
the case of a single reader and single writer, which a set
of correct clients can use to build other abstractions, e.g.,
atomic, multi-writer multi-reader registers [24, 21, 25], con-
current timestamp systems [12, 19}, l-exclusion [11, 2], and
atomic snapshot scan |1, 5]. Our quorum constructions can
also be directly exploited in algorithms that employ ‘uni-
form" quorums for fault tolerance (by involving a threshold
of processes), in order to improve efficiency or tolerate non-
uniform failure scenarios. Examples include algorithms for
shared memory emulation {6}, randomized Byzantine agree-
ment [39], reliable Byzantine multicast (8, 33, 27], and secure
replicated data [18].

The rest of this paper is structured as follows. We begin
in Section 2 with a description of related work. In Section 3
we present our system model and definitions. We present
quorum systems for the replication of arbitrary data subject
to arbitrary server failures in Section 4, and in Section 5
we present two variations of these systems. We then detail
an access protocal for replicated services that tolerate faulty
clients in addition to faulty servers in Section 6. We conclude
in Section 7.

2 Related work

Our work was influenced by the substantial body of litera-
ture on quorum systems for benign failures and applications
that make use of them, e.g., {15, 38, 26, 14, 17, 13, 9, 4, 30].
In particular, our grid construction of Section 4 was influ-
enced by grid-like constructions for benign failures (e.g., [9]),
and we borrow our definition of load from [30].

Quorum systems have been previously employed in the
implementation of security mechanisms. Naor and Wool [31]
described methods to construct an access-control service us-
ing quorums. Their constructions use cryptographic tech-
niques to ensure that out-of-date (but correct) servers can-
not grant access to unauthorized users. Agrawal and El
Abbadi [3] and Mukkamala [29] considered the confiden-
tiality of replicated data despite the disclosure of the con-
tents of a threshold of the (otherwise correct) repositories.
Their constructions used quorums with increased intersec-
tion, combined with Rabin’s dispersal scheme [32], to en-
hance the confidentiality and availability of the data despite
some servers crashing or their contents being observed. Our
work differs from all of the above by considering arbitrarily
faulty servers, and accommodating failure scenarios beyond
a simple threshold of servers.
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Herlihy and Tygar [18] applied quorums with increased
intersection to the problem of protecting the confidential-
ity and integrity of replicated data against a threshold of
arbitrarily faulty servers. In their constructions, replicated
data is stored encrypted under a key that is shared among
the servers using a threshold secret-sharing scheme {36], and
each client accesses a threshold number of servers to recon-
struct the key prior to performing (encrypted) reads and
writes. This construction exhibits one approach to make
replicated data self-verifying via encryption, and thus the
quorum system they develop is a special case of our dis-
semination quorum systems, i.e., for a threshold of faulty
servers.

3 Preliminaries

3.1 System model

We assume a universe U of servers, |U} = n, and an arbi-
trary number of clients that are distinct from the servers. A
quorum system Q C 2V is a set of subsets of U, any pair of
which intersect. Each Q € Q is called a quorum.

Servers (and clients) that obey their specifications are
correct. A faultyserver, however, may deviate from its spec-
ification arbitrarily. A fail-prone system B C 2V is a set of
subsets of U, none of which is contained in another, such
that some B € B contains all the faulty servers. The fail-
prone system represents an assumption characterizing the
failure scenarios that can occur, and could express typical
assumptions that up to a threshold of servers fail, as well as
less uniform assumptions.

In the remainder of this section, and throughout Sec-
tions 4 and 5, we assume that clients behave correctly. In
Section 6 we will relax this assumption {and will be explicit
when we do so).

We assume that any two correct processes (clients or
servers) can communicate over an authenticated, reliable
channel. That is, a correct process receives a message from
another correct process if and only if the other correct pro-
cess sent it. However, we do neot assume known bounds
on message transmission times; i.e., communication is asyn-
chronous.

3.2 Access protocol

We consider a problem in which the clients perform read and
write operations on a variable z that is replicated at each
server in the universe U. A copy of the variable z is stored at
each server, along with a timestamp value t. Timestamps are
assigned by a client to each replica of the variable when the
client writes the replica. Our protocols require that differ-
ent clients choose different timestamps, and thus each client
¢ chooses its timestamps from some set 7. that does not
intersect T, for any other client ¢’. The timestamps in T.
can be formed, e.g., as integers appended with the name of
c in the low-order bits. The read and write operations are
implemented as follows.

Write: For a client ¢ to write the value v, it queries each
server in some quorum @ to obtain a set of value/timestamp
pairs A = {<vu, tu>}ucq; chooses a timestamp ¢t € T, greater
than the highest timestamp value in A and greater than any
timestamp it has chosen in the past; and updates = and the
associated timestamp at each server in @ to v and ¢, respec-
tively.



Read: For a client to read z, it queries each server in
some quorum @ to obtain a set of value/timestamp pairs
A = {<v4,tu>}ueq. The client then applies a deterministic
function Result() to A to obtain the result Result(A) of the
read operation.

In the case of a write operation, each server updates its local
variable and timestamp to the received values <v,t> only if ¢
is greater than the timestamp currently associated with the
variable.

Two points about this description deserve further dis-
cussion. First, the nature of the quorum sets @ and the
function Result() are intentionally left unspecified; further
clarification of these are the point of this paper. Second,
this description is intended to require a client to obtain a
set A containing value/timestamp pairs from every server
in some quorum . That is, if a client is unable to gather
a complete set A for a quorum, e.g., because some server
in the quorum appears unresponsive, the client must try to
perform the operation with a different quorum. This re-
quirement stems from our lack of synchrony assumptions on
the network: in general, the only way that a client can know
that it has accessed every correct server in a quorum is to
{apparently successfully) access every server in the quorum.
Our framework guarantees the availability of a quorum at
any moment, and thus by attempting the operation at mul-
tiple quorums, a client can eventually make progress. In
some cases, the client can achieve progress by incrementally
accessing servers until it obtains responses from a quorum
of them.

In Sections 4 and 5, we will argue the correctness of the
above protocol—instantiated with quorums and a Result{()
function that we will define—according to the following se-
mantics; 2 more formal treatment of these concepts can be
found in {24]. We say that a read operation begins when
the client initiates the operation and ends when the client
obtains the read value; an operation to write value v with
timestamp t begins when the client initiates it and ends when
all correct servers in some quorum have received the up-
date v,2. An operation op; precedes an operation opz if
op1 ends before op; begins (in real time). If op) does not
precede op; and op; does not precede op,, then they are
called concurrent. Given a set of operations, a serialization
of those operations is a total ordering on them that extends
the precedence ordering among them. Then, for the above
protocol to be correct, we require that any read that is con-
current with no writes returns the last value written in some
serialization of the preceding writes. In the case of a single-
reader, single-writer variable, this will immediately imply
safe semantics [24].

3.3 Load

A measure of the inherent performance of a quorum system
is its load. Naor and Wool [30] define the load of a quorum
system as the probability of accessing the busiest server in
the best case. More precisely, given a quorum system ¢,
an access strategy w is a probability distribution on the ele-
ments of Q; i.e., EQEQ w(Q) = 1. w(Q) is the probability
that quorum @ will be chosen when the service is accessed.
Load is then defined as follows:

Definition 3.1 Let a strategy w be given for a quorum
system @ = {Q1,...,Qm} over a universe U. For an element
u € U, the load induced by w on u is l,(u) = ZQ-Bu w(Qi).
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The load induced by a strategy w on a quorum system @ is
L. (Q) = max{lu(u)}-

The system load (or just load) on a quorum system Q is
L(Q) = min{Lu(Q)},

where the minimum is taken over all strategies. O

We reiterate that the load is a best case definition. The
load of the quorum system will be achieved only if an op-
timal access strategy is used, and only in the case that no
failures occur. A strength of this definition is that load is a
property of a quorum system, and not of the protocol using
it. A comparison of the definition of load to other seemingly
plausible definitions is given in {30].

4 Masking quorum systems

In this section we introduce masking quorum systems, which
can be used to mask the arbitrarily faulty behavior of data
repositories. To motivate our definition, suppose that the
replicated variable z is written with quorum @Q;, and that
subsequently z is read using quorum @;. If B is the set of
arbitrarily faulty servers, then (@, N @3) \ B is the set of
correct servers that possess the latest value for z. In order
for the client to obtain this value, the client must be able to
locate a value/timestamp pair returned by a set of servers
that could not all be faulty. In addition, for availability we
require that there be no set of faulty servers that can disable
all quorums.

Definition 4.1 A quorum system @ is a masking quorum
system for a fail-prone system B if the following properties
are satisfied.

M1:VQ:,Q: € QVB,,B;€B: (Ql an)\Bl Z B,
M2:VvBeB3Qe@: BnQ=90
]

It is not difficult to verify that a masking quorum sys-
tem enables a client to obtain the correct answer from the
service. The write operation is implemented as described in
Section 3, and the read operation becomes:

Read: For a client to read a variable z, it queries each server
in some quorum Q to obtain a set of value/timestamp pairs
A = {€vy, tu>}uco. The client computes the set
A ={<v,t> : 3B* C Q[ VBeB[B* ZB]A
Yue BY [vu=vAtya=1t]]}.

The client then chooses the pair <v,t>in A’ with the highest
timestamp, and chooses v as the result of the read operation;
if A’ is empty, the client returns L (a null value).

Lemma 4.2 A read operation that is concurrent with no
write operations returns the value written by the last pre-
ceding write operation in some serialization of all preceding
write operations.



Proof. Let W denote the set of write operations preceding
the read. The read operation will return the value written
in the write operation in W with the highest timestamp,
since, by the construction of masking quorum systems, this
value/timestamp pair will appear in 4’ and will have the
highest timestamp in A’ (any pair with a higher timestamp
will be returned only by servers in some B € B). So, it suf-
fices to argue that there is a serialization of the writes in W
in which this write operation appears last, or in other words,
that this write operation precedes no other write operation
in W. This is immediate, however, as if it did precede an-
other write operation in W, that write operation would have
a higher timestamp. O

This lemma implies that the protocol above implements
a single-writer single-reader safe variable [24]. From these,
multi-writer multi-reader atomic variables can be built using
well-known constructions [24, 21, 25].

A necessary and sufficient condition for the existence of
a masking quorum system (and a construction for one, if
it exists) for any given fail-prone system B is given in the
following theorem:

Theorem 4.3 Let B be a fail-prone system for a universe
U. Then there exists a masking quorum system for B iff
@ = {U\ B: B ¢ B} is a masking quorum system for B.

Proaf. Obviously, if @ is a masking quorum system for B,
then one exists. To show the converse, assume that @ is not
a masking quorum. Since M2 holds in @ by construction,
there exist Q:,Q2 € @ and B',B” € B, such that (@1 N
Q)\B'CB". Let B, =U\Qi and B, =U\Q;. B
the construction of @, we know that B;, B, € B. By M2,
any masking quorum system for B must contain quorums
Q1 C @1, Q% C Q1. However, for any such Q},Q%, it is the
case that (Q1NQ2)}\ B’ C (@:11Q2)\B’ C B”, violating M1.
Therefore, there does not exist a masking quorum system for
B under the assumption that @ is not a masking quorum
system for B. O

Corollary 4.4 Let B be a fail-prone system for a universe
U. Then there exists a masking quorum system for B iff for
all By, B;, B3, By € B, U g BiUB;UB3UBy. In particular,
suppose that B = {B C U : |B| = f}. Then, there exists a
masking quorum system for Biff n > 4f.

Proof. By Theorem 4.3, there is a masking quorum for B
if @ ={U\ B : B € B} is a masking quorum for B. By
construction, @ is a masking quorum iff M1 holds for Q, i.e.,
iff for all B1, Bz, Bs,B4 € B:

((U\B)N(U\ B:))\ Bs Z By
> U\(B]UB:)Z33UB4
<= U¢ B, UB;UB;sU B;s.

The following theorem was proved in [30] for benign-
failure quorum systems, and holds for masking quorums as
well (as a result of M1). Let c(Q) denote the size of the

smallest quorum of Q.
Theorem 4.5 If Q is a quorum system over a universe of n

48y,

The proof of this theorem in {30} employs rather complex
methods. Here we present a simpler proof of their theorem.

elements, then L{@) > max{c(_b7
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Proof. Let w be any strategy for the quorum system @,
and fix @1 € @ such that |Q1] = ¢(@). Summing the loads
induced by w on all the elements of @, we obtain:

S = ¥ S e

ueQ; u€Q; Q:du

z Z w(Qi)

Qi ue(Q1NQ;)

> w(@)
Qs
= 1

v

Therefore, there exists some element in Q; that suffers a

load of at least c(jj

Similarly, summing the total load induced by w on all of
the elements of the universe, we get:

Dlw) = YN w(Qi)

ueU uelU Q;du

DY w(@)
Qi uEQ;

> e(Quw(@)
Qi

(<)

(Here, the inequality results from the minimality of ¢(@Q).)
Therefore, there exists some element in U that suffers a load

of at least 5(“21 a

v

Since any masking quorum system is a quorum system, we
have, a fortiori:

Corollary 4.6 If @ is a masking quorum system over a
universe of n elements, then L{Q) > max{#Qj, i("g)-} and
thus L(Q) > 71=-

Below we give several examples of masking quorum sys-
tems and describe their properties.

Example 4.7 (Threshold) Suppose that B = {B C U :
|B| = f}, n > 4f. Note that this corresponds to the usual
threshold assumption that up to f servers may fail. Then,
the quorum system @ = {Q C U : |Q] = [&";ﬁ‘—l]} is
a masking quorum system for B. M1 is satisfied because
any Gh,Q2 € @ will intersect in at least 2f + 1 elements.
M2 holds because [2t3*1] < n — f. A strategy that as-

signs equal probability to each quorum induces a load of
1 fm] on the system. By Corollary 4.6, this load is in
fact the load of the system. O

The following example is interesting since its load de-
creases as a function of n, and since it demonstrates a method
for ensuring system-wide consistency in the face of Byzan-
tine failures while requiring the involvement of fewer than a
majority of the correct servers.

Example 4.8 (Gnd quoruma) Suppose that the universe
of servers is of size n k? for some integer k and that
B={BCU:|B|=f}, 3f+1 < 4/n. Arrange the universe
into a 4/n % 4/n grid, as shown in Figure 1. Denote the rows



and columns of the grid by R; and Cj, respectively, where
1 <1< 4/n. Then, the quorum system

Q=1<Cu|JR: LY C {1 .VRhII=2f +1
i€l

is a masking quorum system for B. M1 holds since every pair
of quorums intersect in at least 2f + 1 elements (the column
of one quorum intersects the 2f + 1 rows of the other), and
M2 holds since for any choice of f faulty elements in the grid,
2f + 1 full rows and a column remain available. A strategy
that assigns equal probability to each quorum induces a load
of M@M, and again by Corollary 4.6, this is the
load of the system. O

Note that by choosing B = {0} (i.e., f = 0) in the exam-
ple above, the resulting construction has a load of 0(71;),

which asymptotically meets the bounds given in Corollary
4.6. In general, however, this construction yields a load of
O(%), which is not optimal: Malkhi et al. [28] show a lower

bound of

tem for B={B C U :|B| = f}, and provide a construction
whose load matches that bound.

\/ y;ﬂ on the load of any masking quorum sys-

Figure 1: Grid construction, k x k =n, f = 1 (one quorum
shaded).

Example 4.9 (Partition) Suppose that B = {Bi,...,Bm},
m > 4, is a partition of U where B; # 0 for all z, 1 <
it < m. This choice of B could arise, for example, in a
wide area network composed of multiple local clusters, each
containing some B;, and expresses the assumption that at
any time, at most one cluster is faulty. Then, any collection
of nonempty sets B; C B;i, 1 € ¢ < m, can be thought of
as ‘super-elements’ in a universe of size m, with a threshold
assumption f = 1. Therefore, the following is a masking
quorum system for B:

Q={{JBi : 1Cc{y,...,m}, 1| =22
ier
M1 is satisfied because the intersection of any two quorums
contains elements from at least three sets in B. M2 holds
since there is no B € B that intersects all quorums. A strat-

egy that assigns equal probability to each quorum induces a
load of 1[™42] on the system regardless of the size of each
Bi, and again Corollary 4.6 implies that this is the load of
the system.

If m = k? for some k, then a more efficient construction
can be achieved by forming the grid construction from Ex-
ample 4.8 on the ‘super elements’ {B;}, achieving a load of

4ym-—-3 O
.
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5 Variations

5.1 Dissemination quorum systems

As a special case of services that can employ quorums in
a Byzantine environment, we now consider applications in
which the service is a repository for self-verifying informa-
tion, i.e., information that only clients can create and to
which clients can detect any attempted modification by a
faulty server. A natural example is a database of public key
certificates as found in many public key distribution systems
{e.g., [10, 37, 23]). A public key certificate is a structure con-
taining a name for a user and a public key, and represents
the assertion that the indicated public key can be used to au-
thenticate messages from the indicated user. This structure
is digitally signed (e.g., [35]) by a certification authority so
that anyone with the public key of this authority can verify
this assertion and, providing it trusts the authority, use the
indicated public key to authenticate the indicated user. Due
to this signature, it is not possible for a faulty server to un-
detectably modify a certificate it stores. However, a faulty
server can undetectably suppress a change from propagating
to clients, simply by ignoring an update from a certification
authority. This could have the effect, e.g., of suppressing
the revocation of a key that has been compromised.

As can be expected, the use of digital signatures to ver-
ify data improves the cost of accessing replicated data. To
support such a service, we employ a dissemination quorum
system, which has weaker requirements than masking quo-
rums, but which nevertheless ensures that in applications
like those above, self-verifying writes will be propagated to
all subsequent read operations despite the arbitrary failure
of some servers. To achieve this, it suffices for the inter-
section of every two quorums to not be contained in any
set of potentially faulty servers (so that a written value can
propagate to a read). And, supposing that operations are
required to continue in the face of failures, there should be
quorums that a faulty set cannot disable.

Definition 5.1 A quorum system Q is a dissemination quo-
rum system for a fail-prone system B if the following prop-
erties are satisfied.

D1: V¥Q:1,Q: € QVBeB: ¢hnQ@a¢ B
D2:vBeB3IQe@: BnNQ=10

w]

A dissemination quorum system will suffice for propagat-
ing self-verifying information as in the application described
above. The write operation is implemented as described in
Section 3, and the read operation becomes:

Read: For a client to read a variable z, it queries each server
in some quorum @ to obtain a set of value/timestamp pairs
A = {<vu,tu>}uecq. The client then discards those pairs
that are not verifiable (e.g., using an appropriate digital
signature verification algorithm) and chooses from the re-
maining pairs the pair <v,t> with the largest timestamp. v
is the result of the read operation.

It is important to note that timestamps must be included
as part of the self-verifying information, so they cannot be
undetectably altered by faulty servers. In the case of the ap-
plication described above, existing standards for public key
certificates (e.g., [10]} already require a real-time timestamp
in the certificate.



The following lemma proves correctness of the above pro-
tocol using dissemination quorum systems. The proof is al-
most identical to that for masking quorum systems.

Lemma 5.2 A read operation that is concurrent with no
write operations returns the value written by the last pre-
ceding write operation in some serialization of all preceding
write operations.

Due to the assumption of self-verifying data, we can also
prove in this case the following property.

Lemma 5.3 A read operation that is concurrent with one
or more write operations returns either the value written by
the last preceding write operation in some serialization of
all preceding write operations, or any of the values being
written in the concurrent write operations.

The above lemmata imply that the protocol above im-
plements a single-writer single-reader regular variable [24].
Theorems analogous to the ones given for masking quorum
systems above are easily derived for dissemination quorums.
Below, we list these results without proof.

Theorem 5.4 Let B be a fail-prone system for a universe
U. Then there exists a dissemination quorum system for B
if @Q={U\ B:B € B} is a dissemination quorum system
for B.

Corollary 5.5 Let B be a fail-prone system for a universe
U. Then there exists a dissemination quorum system for B
iff for all By, B2, Bs € B, U € By U By U Bs. In particular,
suppose that B = {B C U : |B] = f}. Then, there exists a
dissemination quorum system for B iff n > 3f.

Corollary 5.6 If @ is a dissemination quorum system over
a universe of n elements, then L(Q) > max{c(—b—, ﬂngl},
and thus also L{Q) > 7‘:

Below, we provide several example constructions of dissem-
ination quorum systems.

Example 5.7 (Threshold) Suppose that B = {B C U :
{B| = f}, n > 3f. Note that this corresponds to the usual
threshold assumption that up to f servers may fail. Then,
the quorum system @ = {Q C U : |Q| = |'"+2-—tﬂ'|} is a
dissemination quorum system for B with load 1[2t{+1] 0O

Example 5.8 (Grid) Let the universe be arranged in a grid
as in Example 4.8 above, and let B = {B C U : |B| = f},
2f + 1 < 4/n. Then, the quorum system

Q=1{GU|JR:L{5}C{1...va}|=f+1
iel
is a dissemination quorum system for B. The load of this

system is UHAVA-(1+1) ¢

Example 5.9 (Partition) Suppose that B = {B1,...,Bm},
m > 3, is a partition of U. For any collection of nonempty
sets B; C B, 1 < i1 < m, the Threshold construction of
Example 5.7 on the ‘super-elements’ B; C B; (as in Example
4.9) yields a dissemination quorum system with a load of
17m427 If m = k? for some k, the Grid construction of

Example 5.8 achieves a load of gﬁéf——_—? a

5.2 Opaque masking quorum systems

Masking quorums impose a requirement that clients know
the fail-prone system B, while there may be reasons that
clients should not be required to know this. First, it some-
what complicates the client’s read protocol. Second, by re-
vealing the failure scenarios for which the system was de-
signed, the system also reveals the failure scenarios to which
it is vulnerable, which could be exploited by an attacker to
guide an active attack against the system. By not reveal-
ing the fail-prone system to clients, and indeed giving each
client only a small fraction of the possible quorums, the sys-
tem can somewhat obscure (though perhaps not secure in
any formal sense) the failure scenarios to which it is vulner-
able, especially in the absence of client collusion.

In this section we describe one way to modify the mask-
ing quorum definition of Section 4 to be opague, i.e., to elim-
inate the need for clients to know B. In the absence of the
client knowing B, the only method of which we are aware for
the client to reduce a set of replies from servers to a single
reply from the service is via voting, i.e., choosing the reply
that occurs most often. In order for this reply to be the cor-
rect one, however, we must strengthen the requirements on
our quorum systems. Specifically, suppose that the variable
z is written with quorum @, and that subsequently =z is read
with quorum @;. If B is the set of arbitrarily faulty servers,
then (Q1 M Q3) \ B is the set of correct servers that possess
the latest value for z (see Figure 2). In order for the client
to obtain this value by vote, this set must be larger than the
set of faulty servers that are allowed to respond, i.e., @ N B.
Moreover, since these faulty servers can “team up” with the
out-of-date but correct servers in an effort to suppress the
write operation, the number of correct, up-to-date servers
that reply must be no less than the number of faulty or
out-of-date servers that can reply, i.e.,, (QaNB)U(Q2\ Q1).

Definition 5.10 A quorum system Q is an opaque masking
guorum system for a fail-prone system B if the following
properties are satisfied.

0O1: VQ1,Q2 €EQVBeB:
(@ NQ2)\ B|>|(Q:NB)U(Qz\ Q1)

02: ¥Q1,Q2 € QVB e B: [(@NQ2)\B|>|Q.n B|
03:VBeBIQeQ: BNQ=20
]

Q2

o [ > KN+l
o2 1 > N

Figure 2: O1 and O2

Note that Ol admits the possibility of equality in size be-
tween (Q: N Q2)\ B and (Q2 N B) U (Q2 \ @1). Equality is



sufficient since, in the case that the faulty servers “team up”
with the correct but out-of-date servers in @2, the value re-
turned from (@1 NQ2)\ B will have a higher timestamp than
that returned by (Q: N B)U{Q2\Q1). Therefore, in the case
of a tie, a reader can choose the value with the higher times-
tamp. It is interesting to note that a strong inequality in
O1 would permit a correct implementation of a single-reader
singer-writer safe variable that does not use timestamps (by
taking the majority value in a read operation).

It is not difficult to verify that an opaque masking quo-
rum system enables a client to obtain the correct answer
from the service. The write operation is implemented as de-
scribed in Section 1, and the read operation becomes:

Read: For a client to read a variable z, it queries each server
in some quorum @ to obtain a set of value/timestamp pairs
A = {<vu,tu>}ueq. The client chooses the pair <v,t> that
appears most often in A, and if there are multiple such val-
ues, the one with the highest timestamp. The value v is the
result of the read operation.

Opaque masking quorum systems, combined with the access
protocol described previously, provide the same semantics
as regular masking quorum systems. The proof is almost
identical to that for regular masking quorums.

Lemma 5.11 A read operation that is concurrent with no
write operations returns the value written by the last pre-
ceding write operation in some serialization of all preceding
write operations.

Below we give several examples of opaque masking quo-
rum systems (or just “opaque quorum systems”) and de-
scribe their properties.

Example 5.12 (Threshold) Suppose that B = {B C U :
{Bf = f} where n > 5f and f > 0. Then, the quorum
system @ ={Q CU :{Q|= [#]} is an opaque quorum
system for B, whose load is 1[22£21], 0O

The next theorem proves a resilience bound for opagque quo-
rum systems.

Theorem 5.13 Suppose that B = {B C U : {B| = f}.
There exists an opaque quorum system for Biff n > 5f1.

Proof. That n > 5f is sufficient is already demonstrated
in Example 5.12 above. Now suppose that @ is an opaque
quorum system for B. Fix any Q; € @ such that {Q,| <n—f
{@: exists by O3); note that |Q1| > f by O2. Choose B, C
@1, |Bi| = f, and some Q2 € @ such that Q; C U\ B
(Q: exists by 03). Then Q1 N Q1| < n —2f. By 02,
|@:1 N Q32| > f, and therefore there is some B; € B such that
B; C (&) ﬂQ:. Then

n—3f > [QaNGi|-|Ba|
= [{(Q:N @)\ Bz
> [(@\Q2)u(Q1NBs) (1)
= |Q1\ Q| +|B;]
> |Bi| +|Ba|
= 2f

Where (1) holds by O1. Therefore, we have n > 5f. O

Example 5.14 ( Partition) Suppose that B = {B1,..., Bax},
k > 1, is a partition of U where B; # 0 for all 7, 1 < ¢ < 3k.
Choose any collection of sets Bi C Bi, 1 < i < 3k, such that
|Bi| = c for a fixed constant ¢ > 0. Then, the Threshold

construction of Example 5.12 on the ‘super-elements’ {B;}
(as in Example 4.9), with universe size 3k and a threshold

assumption f = 1, yields an opaque quorum system with
load 3%—1-. a

Unlike the case for regular masking quorum systems, an
open problem is to find a technique for testing whether,
given a fail-prone system B, there exists an opaque quorum
system for B (other than an exhaustive search of all subsets
of 2Y).

In the constructions in Examples 5.12 and 5.13, the re-
sulting quorum systems exhibited loads that at best were
constant as a function of n. In the case of masking quorum
systems, we were able to exhibit quorum systems whose load
decreased as a function of n, namely the grid quorums. A
natural question is whether there exists an opaque quorum
system for any fail-prone system B that has load that de-
creases as a function of n. In this section, we answer this
question in the negative: we show a lower bound of % on the
load for any opaque quorum system construction, regardless
of the fail-prone system.

Theorem 5.15 The load of any opaque quorum system is
at least %

Proof. Ol implies that for any @:,Q2 € @, |@Q1 N Q3| >

@1\ Q2], and thus |Q1 N Q2| > l%ll Let w be any strategy
for the quorum system @, and fix any @1 € @. Then, the
total load induced by w on the elements of Q, is:

Do) = YD w(Qy)

uveEQ: u€EQ) Qidu

YooY w@)

Qs uEQ;NQ;
Q.

{Ql
2

v

Therefore, there must be some server in @; that suffers a
load at least % O

We now present a generic construction of an opaque quo-
rum system for B = {#} and increasingly large universe sizes
n, that has a load that tends to 1 as n grows. We give this
construction primarily to show that the lower bound of %
is tight; due to the requirement that B = {0}, this con-
struction is not of practical use for coping with Byzantine
failures.

Example 5.16 Suppose that the universe of servers is U =
{u1,...,un} where n = 2¢ for some £ > 2, and that B =
{2}. Consider the nxn Hadamard matrix H(£), constructed
recursively as follows:

H() = [:i ‘11]
H(k—1) H(k-
H(k) = [H%k—}g _H((k_li)]
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H(£) has the property that H(£)H(£)T nl, where [ is
the n x n identity matrix. Using well-known inductive ar-
guments [16, Ch. 14], it can be shown that (i} the first row
and column consist entirely of —1’s, (ii) the i-th row and
i-th column, for each 7 > 2, has 1'sin T positions (and simi-
larly for —1’s), and (iii} any two rows (and any two columns)
1,7 > 2 have identical elements in J positions, i.e., I’sin 7
common positions and —1’s in 3 common positions.

We treat the rows of H({) as indicators of subsets of U.
That is, let Qi = {u; : H(L)[3,j] = 1} be the set defined
by the i-th row, 1 < i < n. Note that Q; = 0 and that
u; is not included in any @Qi:. We claim that the system
Q@ = {@3,...,Qn} is an opaque quorum system for B. Using
properties (i)-(iii) above, we have that |Q;| = § for each ¢ >
2; that each u;, 7 > 2, is in exactly 3 of the sets Qa,...,Qn;
and that for any 1,7 > 2, if i $# j then [Q: N Q5| = §. From
these, the O1 a’fld 02 requirements can be quickly verified,
and a load of ;:Ll can be achieved, e.g., with a strategy that

assigns equal probability to each quorum. O

6 Faulty clients

So far, we have been concerned with providing a consistent
service to a set of correct clients. In this section, we ex-
tend our treatment to address faulty clients in addition to
faulty servers, as would be required if servers are allowed to
act as {or on behalf of) clients. Since updates may now be
generated by faulty clients, we can make no assumption of
self-verifying data, and thus use masking quorum systems
(Section 4} to implement the service. We focus on ensuring
the consistency of the data stored at the replicated service as
seen by correct clients only. Since a faulty client might not
complete a write operation at a quorum of servers, or might
even write different values to different servers, in this section
we modify the write protocol to include an update protocol
implemented by the servers that prevents clients from leav-
ing the service in an inconsistent state. This update protocol
could be implemented using well-known agreement protocols
{e.g., {22, B]), but only if the given fail-prone system B has
the property that each B € B is of size less than |U|/3, and
only by involving all of the servers in the system. We de-
scribe a protocol that is correct for any fail-prone system B
for which a masking quorum exists, and that involves only
a quorum of correct servers to complete an update opera-
tion. While we do not explicitly treat load in this section,
this latter property is essential for the load measure that we
have adopted to be useful.

6.1 The write protocol

This section describes the protocol by which clients write the
variable z replicated at each server. We replace the write
operation of Section 3 by the following procedure:

Write: For a client ¢ to write the value v, it queries each
server in some quorum Q to obtain a set of value/timestamp
pairs A = {<vy, tu>}ueq; chooses a timestamp ¢t € T, greater
than the highest timestamp value in A and greater than any
timestamp it has chosen in the past; and performs Init(Q,
v, t).

Note that writing the pair <v,t> to the quorum @ is per-
formed by executing the operation Init(Q,v,t). Servers ex-
ecute corresponding events Deliver(v,t). If a correct server
executes Deliver(v,t), and if ¢ is greater than the timestamp
currently stored with the variable, then the server updates
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the value of the variable and its timestamp to v and ¢, re-
spectively. Regardless of whether it updates the variable, it
sends an acknowledgment message to ¢ where T, 3 t.

The correctness of this protocol depends on the following
relationships among Init executions at clients and Deliver
events at servers. How to implement Init and Deliver to
satisfy these relationships is the topic of Section 6.2.

Integrity: If c is correct, then a correct server executes
Deliver(v,t) where t € T, only if ¢ executed Init(Q,v,t) for
some Q € Q.

Agreement: If a correct server executes Deliver(v,t) and
a correct server executes Deliver(v',t), then v = v'.

Propagation: If a correct server executes Deliver(v,t),
then eventually there exists a quorum Q € @ such that
every correct server in @ executes Deliver(v,t).

Validity: If a correct client executes Init(Q,v,t) and all
servers in @ are correct, then eventually a correct server ex-
ecutes Deliver(v,t).

Note that by Validity, if a correct client executes Init(Q, v, t)
but Q contains a faulty server, then there is no guarantee
that Deliver(v,t) will occur at any correct server; i.e., the
write operation may have no effect. A correct server ac-
knowledges each Deliver(v,t) execution as described above
to inform the client that Deliver(v,t) was indeed executed.
If the client receives acknowledgments from a set Bt of
servers, such that VB € B: Bt ¢ B, then it is certain that
its write will be applied at all correct servers in some quorum
Q (by Propagation). If the client receives acknowledgments
from no such set B of servers, then it must attempt the
Init operation again with a different quorum. As before, M2
guarantees the availability of some quorum.

In order to argue correctness for this protocol, we have to
adapt the definition of operation precedence to allow for the
behavior of a faulty client. The reason is that it is unclear
how to define when an operation by a faulty client begins
or ends, as the client can behave outside the specification of
any protocol. We now say that a write operation that writes
v with timestamp ¢t € T,, where c is faulty, begins when the
first correct server executes Deliver(v,t) and ends when all
correct servers in some quorum have executed Deliver(v, t).
Write operations by correct clients begin as before and end
when all the correct servers in some quorum have delivered
the update. We do not define or make use of the duration
of a read by a faulty client; reads by faulty clients are not
ordered with respect to other operations. Carrying over the
remainder of the precedence definition, a proof very similar
to that of Lemma 4.2 suffices to prove the following:

Lemma 8.1 A correct process’ read operation that is con-
current with no write operations returns the value written
by the preceding write operation with the highest timestamp
among all preceding write operations.

We are not aware of any common definition of variable
semantics in the case of possibly faulty clients with which
to compare Lemma 6.1. However, note that if all the write
operations preceding the read are done by correct clients,
the highest timestamp value among them will belong to the
last write in some serialization of them, and therefore the
read will return that value.



6.2 The update operation

The remaining protocol to describe is the update protocol
for masking quorum systems that satisfies Integrity, Agree-
ment, Propagation, and Validity. We present such an update
protocol in Figure 3.

1. If a client executes Init(@Q,v,t), then it sends <update, Q,
v, t> to each member of Q.

2. If a server receives <update, @, v, t> from a client c, if
t € T., and if the server has not previously received from
¢ a message <update, @', v’, t'> where either ¢' = t and
v’ # v or t’ > ¢, then the server sends <echo, Q, v, t> to
each member of Q.

3. If a server receives identical echo messages <echo, @, v,
t> from every server in Q, then it sends <ready, @, v, t>
to each member of Q.

4. If a server receives identical ready messages <ready, Q,
v, t> from a set BT of servers, such that Bt ¢ B for all
B € B, then it sends <ready, Q, v, t> to every member of
Q@ if it has not done so already.

5. If a server receives identical ready messages <ready, @, v,
t> from a set Q@ of servers, such that for some B € B,
Q™ = Q\ B, it executes Deliver(v,t).

Figure 3: An update protocol

Lemma 6.2(Integrity) If ¢ is correct, then a correct server
executes Deliver(v,t) where t € T, only if ¢ executed
Init(Q,v,t) for some Q.

Proof. The first <ready, @, v, > message from a correct
server is sent only after it receives <echo, @, v,t> from each
member of Q. Moreover, a correct member sends <echo,
Q, v, t> where ¢t € T, only if it receives <update, Q,v,t>
from c over an authenticated channel, i.e., only if ¢ executed

Init{(Q,v,t). O

Lemma 6.3( Agreement) If a correct server executes
Deliver(v,t) and a correct server executes Deliver(v’,t),
then v = v'.

Proof. As argued in the previous lemma, for a correct server
to execute Deliver(v,t), <eche, Q, v, t> must have been sent
by all servers in Q. Similarly, <echo, Q’, v, t> must have
been sent by all servers in Q’. Since every two quorums
intersect in (at least) one correct member, and since any
correct server sends <echo, %, 9, t> for at most one value o,
v must be identical to v'. O

Lemma 6.4 If Q is a masking quorum system over a uni-
verse U with respect to a fail-prone system B, then VQ €
QVB,,B;,B; € B,Q ¢ B, UB; UB;.

Proof. Assume otherwise for a contradiction, i.e., that there
isa Q@ € @ and B;, B;, By € B such that Q C B; UB; U B;s.
By M2, there exists Q' € @, Q"N By = 0. Then, QN Q' C
B; U B; and thus (Q N Q') \ Bz C Bs, contradicting M1. O

Lemma 6.5( Propagation) If a correct server executes
Deliver(v,t), then eventually there exists a quorum Q € Q
such that every correct server in Q executes Deliver(v, t).

Proof. According to the protocol, the correct server that
executed Deliver(v,t) received a message <ready, @, v, t>
from each server in @~ = Q\ B for some Q@ € Q and B € B.
Since, for some B’ € B, (at least) all the members in @~ \ B’
are correct, every correct member of Q receives <ready, Q,
v, t> from each of the members of BT = Q™ \ B’. Since,
VB" € B, Q" \B' ¢ B” (by Lemma 6.4), the ready messages
from B?' cause each correct member of Q to send such a
ready message. Consequently, Deliver(v,t) is executed by
all of the correct members of Q. O

Lemma 6.6( Validity) If a correct client c executes Init(Q, v, t)
and all servers in Q are correct, then eventually a correct
server executes Deliver(v,t).

Proof. Since both the client and all of the members of Q
are correct, <update, @, v, t> will be received and echoed
by every member in Q. Consequently, all the servers in Q
will send <ready, @, v, t> messages to the members of Q,
and will eventually execute Deliver(v,t). O

7 Conclusions

The literature contains an abundance of protocols that use
quorums for accessing replicated data. This approach is ap-
pealing for constructing replicated services as it allows for
increasing the availability and efficiency of the service while
maintaining its consistency. Our work extends this success-
ful approach to environments where both the servers and the
clients of a service may deviate from their prescribed behav-
ior in arbitrary ways. We introduced a new class of quorum
systems, namely masking quorum systems, and devised pro-
tocols that use these quorums to enhance the availability of
systems prone to Byzantine failures. We also explored two
variations of our quorum systems, namely dissemination and
opaque masking quorums, and for all of these classes of quo-
rums we provided various constructions and analyzed the
load they impose on the system.

Our work leaves a number of intriguing open challenges
and directions for future work. One is to characterize the
average performance of our quorum constructions and their
load in less-than-ideal scenarios, e.g., when failures occur.
Also, in this work we described only quorum systems that
are uniform, in the sense that any quorum is possible for
both read and write operations. In practice it may be ben-
eficial to employ quorum systems with distinguished read
quorums and write quorums, with consistency requirements
imposed only between pairs consisting of at least one write
quorum. Although this does not seem to improve our lower
bounds on the overall load that can be achieved, it may al-
low greater flexibility in trading between the availability of
reads and writes.
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